Passer au contenu principal
 

Analyse des Données

Comment augmenter votre CA grâce aux informations sur l’historique d’achat de vos clients ?

Hitachi Solutions > Blog > 2020 > 09 > Comment augmenter votre CA grâce aux informations sur l’historique d’achat de vos clients ?

« L’histoire ne se répète pas, mais elle rime. »

Cet aphorisme populaire, communément (et peut-être à tort) attribué à Mark Twain, est souvent cité pour renforcer l'idée que même si les événements passés ne reflètent pas toujours ceux à venir, ils représentent tout de même une information de qualité. Ce sentiment est d’autant plus vrai dans le secteur du commerce, où l'historique des achats d'un consommateur contient des indications précieuses sur ses futures habitudes d'achat.

La valeur du sentiment social

Utiliser l'historique des achats d'un client pour mieux comprendre qui il est, n'est pas un concept nouveau. En revanche, ce à quoi ressemble cet historique, comment les commerçants en collectent les données et en retirent des informations, a évolué ces dernières années. Par exemple, les évaluations de produits ont toujours été une source d'information précieuse pour les commerçants mais avec l'essor des réseaux sociaux, nous avons constaté une tendance croissante à l'influence du sentiment social. En comparaison avec les évaluations de produits, qui concernent uniquement la qualité du produit, le sentiment social concerne l'ensemble de l'expérience client. En effet, si un client rencontre un vendeur désagréable dans un magasin, il peut partager son expérience sur Twitter ou Instagram. Déçus par cette expérience négative, les abonnés du client peuvent choisir de ne plus fréquenter ce même magasin, voire l’intégralité des magasins de cette enseigne.

La génération Y (milléniaux) et la génération Z passent plus de temps en ligne que les générations précédentes et par conséquent, sont plus susceptibles d'être influencés par le sentiment social que leurs prédécesseurs. En fait, 84 % des générations Y rapportent que le contenu diffusé par d’autres clients, a une certaine influence sur ce qu'ils achètent. De même, 54% de la génération Z considère les réseaux sociaux comme le principal canal d'influence, dépassant les sites de e-commerce.

Pour fidéliser les jeunes générations de consommateurs, et pour mieux comprendre leurs préférences et comportements, les commerçants doivent s’intéresser aux réseaux sociaux. En suivant les tendances sur des plateformes telles que Twitter et Instagram, les commerçants peuvent se faire une idée de ce dont leurs clients parlent et de la manière dont ils en parlent, puis utiliser ces informations pour être plus agiles et proactifs. Par exemple, si la marque de vêtements de sport Lululemon avait remarqué plus tôt que ses pantalons de yoga faisaient partie des Top Tweets sur Twitter, elle les aurait sûrement renvoyés plus vite chez ses fabricants, évitant ainsi la polémique de 2013 concernant la transparence des pantalons de yoga.

Les commerçants devraient également envisager d'investir dans des outils de surveillance des réseaux sociaux telles que Sprinklr et Hootsuite, qui permettent d'analyser facilement les publications de leurs clients et de leur attribuer une valeur de sentiment. Sur la base de cette valeur, un commerçant peut déterminer si un client est un influenceur ou un follower, ce qui permet une granularité de la segmentation client et ajoute une nuance à l'historique d'achat de ce client. 

Comment l’historique des achats a-t-il évolué ?
Intéressons-nous à la façon dont les commerçants collectent et analysent les données sur l'historique d’achats de leurs clients. Depuis très longtemps, les commerçants font appel à des entreprises externes qui disposent de ressources informatiques plus importantes pour générer des rapports sur l'historique des achats. Désormais, grâce à la technologie, les commerçants peuvent faire une grande partie de ce travail eux-mêmes, en retirant des informations de sources internes, comme le système de point de vente (POS) et la solution e-commerce et les informations de sources externes, comme une base de données de cartes de crédit.

En ce qui concerne les données en interne, il existe six types d'historique d'achat :

Chacune de ces transactions génère des données substantielles sur l'historique des achats, pouvant être analysées par les commerçants, qui récupèrent ainsi des informations précieuses sur leurs clients, et identifient différentes tendances en matière de données, telles que :

  • Les clients : Grâce aux données sur l'historique des achats, les commerçants peuvent savoir qui achète quoi et quand. Cela leur donne une idée claire des endroits où les clients sont le plus susceptibles de faire leurs achats et quand, des types de contenu marketing qui pourraient les intéresser, de la probabilité qu'ils soient des clients réguliers, etc.
  • Les Dates : Les données relatives à l'historique des achats peuvent indiquer le moment où les produits sont commandés et en quelles quantités. Sur la base de ces informations, les commerçants peuvent découvrir les tendances saisonnières. Par exemple, un commerçant peut remarquer une augmentation constante du volume des ventes les mois précédant Noël, et une baisse soudaine immédiatement à la fin de la période de vacances. Outre les tendances saisonnières, les commerçants peuvent également, grâce aux progrès technologiques, utiliser l'historique des achats pour obtenir des informations actualisées et modifier les prix et les marchandises en conséquence, en temps quasi réel.
  • Produits : les données sur l'historique des achats peuvent montrer quels sont les produits les plus populaires et quels sont les produits qui sont couramment vendus ensemble. Ces informations sont essentielles pour les moteurs de recommandation, qui peuvent suggérer quels produits doivent être stockés en permanence, quels produits se vendent le mieux lorsqu'ils sont présentés ensemble, et quels produits pourraient éventuellement être regroupés et vendus à prix réduits.
  • Réductions : les commerçants peuvent voir quels coupons, remises et offres génèrent le plus grand taux de rendement, en analysant l'historique d'achat des clients. Les commerçants utilisent ces informations pour mieux comprendre ce qui a poussé les clients à acheter et quel type de message leur convient le mieux. Cela, afin de mettre en place des campagnes marketing encore plus efficaces.

Les avantages de l’analyse de l’historique des achats

Les commerçants peuvent exploiter les données relatives à l'historique des achats pour améliorer l'expérience client, notamment grâce à :

  • La vente upsell ou cross-sell sur la base de recommandations de produits personnalisés. Voir quels produits un client a acheté par le passé ou quels produits il rachète fréquemment, peut engendrer d’importantes opportunités de ventes upsell et cross-sell.

Exemple : Un magasin d'électroménager peut filtrer les données relatives à l'historique des achats pour savoir quels sont les clients qui ont récemment acheté une machine à laver. Le commerçant peut aller encore plus loin, et rechercher les clients qui ont récemment acheté une machine à laver et qui ont deux enfants ou plus. Les capteurs IoT des machines elles-mêmes pourraient également indiquer que les clients de ce groupe démographique font généralement plusieurs machines de linges par jour. Sur la base de ces informations, le magasin pourrait envoyer à ces clients une campagne marketing ciblée annonçant un service de livraison de lessive à leur domicile toutes les x semaines.

  • L’envoi de messages personnalisés. 76 % des clients sont intéressés par des remises personnalisées basées sur leur historique d'achat, tandis que 59 % des clients qui ont goûté à la personnalisation indiquent que celle-ci a un effet non négligeable sur leurs achats. Les commerçants doivent utiliser les données de l'historique des achats pour comprendre ce qui importe à leurs clients et agir en conséquence.

Exemple : Un commerçant en cosmétiques remarque que l'un de ses clients a une marque de mascara préférée. Sur la base de cette information, le commerçant peut envoyer un email personnalisé à ce client pour savoir s’il a besoin de renouveler son achat, et ajouter un coupon ou code de réduction à utiliser le cas échéant. En rachetant le mascara en ligne ou en magasin, le client peut même mettre des articles supplémentaires dans son panier, ce qui augmente le bénéfice global de la vente.

  • Des prévisions des futures demandes plus précises. Comme mentionné précédemment, les commerçants peuvent utiliser les données de l'historique des achats pour savoir quels produits sont les plus populaires, ceux qui le sont le moins, à quel moment certains produits sont les plus susceptibles de se vendre, etc. Ces informations permettent aux commerçants de prendre des décisions davantage fondées sur des données, par exemple pour décider des marchandises à réapprovisionner en fonction des prévisions de la demande future ou pour trouver des moyens stratégiques de retirer les stocks à rotation lente des rayons.


Exemple : En utilisant l'historique d’achats des clients, un magasin d'articles de sport constate qu'il a régulièrement vendu un modèle particulier de VTT au cours des six derniers mois. Il constate également qu'il a vendu relativement peu d'unités d'un modèle différent de VTT au cours de cette période. Sur la base de ces informations, au moment de réapprovisionner son stock, le commerçant peut doubler sa commande du modèle de VTT le plus populaire et choisir de ne pas réapprovisionner le modèle le moins populaire. De plus, le commerçant peut déplacer un certain type de vélo (à faible vitesse de rotation) vers un autre magasin ou une autre région qui a enregistré des ventes plus élevées pour ce modèle particulier.

  • Booster la fidélité des clients. Pour fidéliser un client, vous devez d'abord comprendre qui il est. Souvent, les programmes de fidélisation sont conçus de telle sorte qu'ils récompensent les clients pour l'argent dépensé, mais ne tiennent pas compte de la façon dont les clients dépensent leur argent. En utilisant les données sur l'historique d’achats en conjonction avec la segmentation des clients, les commerçants peuvent voir quels clients ont acheté quels produits et leur offrir des récompenses personnalisées en fonction de leurs intérêts.


Exemple : Après avoir examiné l'historique d’achats d’un de leurs clients, un magasin de jeux vidéo remarque que non seulement il s’agit d’un acheteur fréquent, mais également qu'il achète exclusivement des jeux Xbox. Sur la base de cette information, le commerçant peut à juste titre supposer que le client possède une console Xbox et lui proposer des offres de fidélité sur les produits Xbox par opposition, par exemple, aux produits pour les consoles PlayStation ou Nintendo Switch.


Le Master Data Management (Gestion des données de base)

Le but de l'analyse des données sur l'historique d’achats est de créer une expérience client connectée, mais cela signifie que pour y parvenir, vos données doivent également être connectées.

Malgré les progrès technologiques, de nombreux commerçants utilisent encore divers systèmes hétérogènes pour traiter et stocker les informations sur les clients, tels que les systèmes PoS, les CRM, les systèmes d'enquête, etc. Par exemple, un client peut s'inscrire en ligne, faire ses achats dans plusieurs magasins et passer une commande par catalogue, le tout pour une même enseigne. Étant donné que les informations sur ce client sont maintenant réparties sur au moins trois systèmes différents, on pourrait croire que ces informations représentent des transactions pour trois clients distincts, mais ce serait inexact.

C'est là qu'intervient la gestion des données de base (MDM). La MDM fait référence au processus par lequel les différentes unités opérationnelles et départements d'une entreprise travaillent ensemble pour :

  • Examiner les informations réparties entre plusieurs sources de données,
  • Veiller à ce que ces informations soient cohérentes (et les mettre à jour si elles ne le sont pas),
  • Consolider ces informations dans une base de données unique.


En implémentant une stratégie MDM fiable et en stockant toutes les données relatives à l'historique d’achats dans un référentiel centralisé, les commerçants peuvent véritablement obtenir une vue globale de leurs clients.

Profitez de l’expérience d’Hitachi Solutions

Donner un sens aux grandes quantités de données sur l'historique d’achats des clients au quotidien peut sembler être un défi de taille, même pour les commerçants qui ont accès aux technologies les plus récentes et les plus performantes. Parfois, il est utile d’avoir un backup.


Hitachi Solutions aide les commerçants à créer des expériences client exceptionnelles depuis des années. Pour cela nous exploitons toute la puissance de Microsoft, notamment avec Azure Databricks, le Machine Learning, Dynamics 365 Customer InsightsDynamics 365 Commerce, et Synapse Analytics.

Hitachi Solutions vous accompagne, que ce soit pour vous apprendre à extraire des informations des données sur l'historique des achats de vos clients ou pour être plus efficace dans le domaine de la science des données. Contactez-nous dès aujourd'hui pour nous faire savoir ce que nous pouvons faire pour vous.

Contactez nous pour en savoir plus
 

Guide des dirigeants

Retail : les clés d’une transformation digitale réussie

Les attentes des clients changent considérablement, faisant du retail un secteur en pleine évolution. Pour répondre aux nouvelles demandes de ces acheteurs augmentés, votre priorité numéro est l’expérience client, analysée finement grâce à la data.

Télécharger le guide
*

Philippe Pasco

Philippe possède une large expérience des solutions Dynamics depuis de nombreuses années chez différents intégrateurs. Il est actuellement en charge du business développement chez Hitachi Solutions qui recoupe les activités de vente, le marketing et le recrutement.

*

Author Spotlight

Philippe Pasco

Philippe possède une large expérience des solutions Dynamics depuis de nombreuses années chez différents intégrateurs. Il est actuellement en charge du business développement chez Hitachi Solutions qui recoupe les activités de vente, le marketing et le recrutement.

Désolé, une erreur s'est produite lors de la tentative d'envoi de vos données

Nous vous remercions pour votre demande, notre équipe reviendra vers vous dans les plus brefs délais.

Icon